3.321 \(\int \frac{x^6}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=325 \[ -\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}} \]

[Out]

-((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4
)*Sqrt[b^2 - 4*a*c]) + ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/
4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b -
 Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2
^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.306896, antiderivative size = 325, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1374, 298, 205, 208} \[ -\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (\sqrt{b^2-4 a c}-b\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(a + b*x^4 + c*x^8),x]

[Out]

-((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4
)*Sqrt[b^2 - 4*a*c]) + ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/
4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b -
 Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(3/4)*ArcTanh[(2
^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*c^(3/4)*Sqrt[b^2 - 4*a*c])

Rule 1374

Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(d^n*(b/q + 1))/2, Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Dist[(d^n*(b/q - 1))/2, Int[(d*x)^(m
 - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
 0] && GeQ[m, n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^6}{a+b x^4+c x^8} \, dx &=-\left (\frac{1}{2} \left (-1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx\right )+\frac{1}{2} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx\\ &=-\frac{\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} \sqrt{c}}+\frac{\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} \sqrt{c}}-\frac{\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} \sqrt{c}}+\frac{\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} \sqrt{c}}\\ &=-\frac{\left (-b-\sqrt{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-b+\sqrt{b^2-4 a c}\right )^{3/4} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}+\frac{\left (-b-\sqrt{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}-\frac{\left (-b+\sqrt{b^2-4 a c}\right )^{3/4} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [C]  time = 0.0244725, size = 44, normalized size = 0.14 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^3 \log (x-\text{$\#$1})}{2 \text{$\#$1}^4 c+b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(a + b*x^4 + c*x^8),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , (Log[x - #1]*#1^3)/(b + 2*c*#1^4) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 43, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{6}\ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(c*x^8+b*x^4+a),x)

[Out]

1/4*sum(_R^6/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(x^6/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.92876, size = 8154, normalized size = 25.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(
b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*arctan(1/2*((b^
5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^
8 - 64*a^3*c^9)) + (b^4 - 5*a*b^2*c + 4*a^2*c^2)*x - sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^5*c^3 - 8*a*b
^3*c^4 + 16*a^2*b*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)
))*sqrt((2*(a*b^2 - a^2*c)*x^2 - sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b
^2*c^5 - 64*a^3*c^6)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))
*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*
b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))/(a*b^2 - a^2*c)))*sqrt(sqrt(1/
2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*
a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))/(a*b^2 - a^2*c)) + sqrt(sqrt
(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 -
12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*arctan(1/2*(sqrt(1/2)*(b^
4 - 5*a*b^2*c + 4*a^2*c^2 - (b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 -
 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 +
16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3
 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt((2*(a*b^2 - a^2*c)*x^2 - sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (b^6*c
^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48
*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c
 + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))/(a
*b^2 - a^2*c)) + ((b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^
4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)) - (b^4 - 5*a*b^2*c + 4*a^2*c^2)*x)*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c +
 (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^
8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5))))/(a*b^2 - a^2*c)) + 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3
*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^
2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*log(1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b
^3*c^2 - 16*a^3*b*c^3 - (b^8*c^3 - 14*a*b^6*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 -
2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*
b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b
^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 +
16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3
 - 8*a*b^2*c^4 + 16*a^2*c^5)) - (a^2*b^2 - a^3*c)*x) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*
a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9
)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*log(-1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3
 - (b^8*c^3 - 14*a*b^6*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/
(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*
b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9))
)/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4
 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a
^2*c^5)) - (a^2*b^2 - a^3*c)*x) + 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^
5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^
2*c^4 + 16*a^2*c^5)))*log(1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 + (b^8*c^3 - 14*a*b^6
*c^4 + 72*a^2*b^4*c^5 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^
7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*
sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c
^4 + 16*a^2*c^5)))*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2
)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)) - (a^2*b^2 -
a^3*c)*x) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2
*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*
log(-1/2*sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 + (b^8*c^3 - 14*a*b^6*c^4 + 72*a^2*b^4*c^5
 - 160*a^3*b^2*c^6 + 128*a^4*c^7)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 -
64*a^3*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c
 + a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)))*sq
rt(-(b^3 - 3*a*b*c - (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^6*c^6 - 12*a*b^4
*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)) - (a^2*b^2 - a^3*c)*x)

________________________________________________________________________________________

Sympy [A]  time = 7.0665, size = 230, normalized size = 0.71 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{4} c^{7} - 16777216 a^{3} b^{2} c^{6} + 6291456 a^{2} b^{4} c^{5} - 1048576 a b^{6} c^{4} + 65536 b^{8} c^{3}\right ) + t^{4} \left (- 12288 a^{3} b c^{3} + 10240 a^{2} b^{3} c^{2} - 2816 a b^{5} c + 256 b^{7}\right ) + a^{3}, \left ( t \mapsto t \log{\left (x + \frac{2097152 t^{7} a^{4} c^{7} - 2621440 t^{7} a^{3} b^{2} c^{6} + 1179648 t^{7} a^{2} b^{4} c^{5} - 229376 t^{7} a b^{6} c^{4} + 16384 t^{7} b^{8} c^{3} - 1280 t^{3} a^{3} b c^{3} + 1600 t^{3} a^{2} b^{3} c^{2} - 576 t^{3} a b^{5} c + 64 t^{3} b^{7}}{a^{3} c - a^{2} b^{2}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**4*c**7 - 16777216*a**3*b**2*c**6 + 6291456*a**2*b**4*c**5 - 1048576*a*b**6*c**4 + 6
5536*b**8*c**3) + _t**4*(-12288*a**3*b*c**3 + 10240*a**2*b**3*c**2 - 2816*a*b**5*c + 256*b**7) + a**3, Lambda(
_t, _t*log(x + (2097152*_t**7*a**4*c**7 - 2621440*_t**7*a**3*b**2*c**6 + 1179648*_t**7*a**2*b**4*c**5 - 229376
*_t**7*a*b**6*c**4 + 16384*_t**7*b**8*c**3 - 1280*_t**3*a**3*b*c**3 + 1600*_t**3*a**2*b**3*c**2 - 576*_t**3*a*
b**5*c + 64*_t**3*b**7)/(a**3*c - a**2*b**2))))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(x^6/(c*x^8 + b*x^4 + a), x)